
Anatomy of Functionality Deletion
An Exploratory Study on Mobile Apps

Maleknaz Nayebi

iDB lab, University of Toronto

m.nayebi@utoronto.ca

Konstantin Kuznetsov

Saarland University / CISPA

kuznetsov@st.cs.uni-saarland.de

Paul Chen

SEDS lab, University of Calgary

Paul.chen@ucalgary.ca

Andreas Zeller

Saarland University / CISPA

zeller@cs.uni-saarland.de

Guenther Ruhe

SEDS lab, University of Calgary

ruhe@ucalgary.ca

ABSTRACT
One of Lehman’s laws of so�ware evolution is that the functionality

of programs has to increase over time to maintain user satisfaction.

In the domain of mobile apps, though, too much functionality can

easily impact usability, resource consumption, and maintenance

e�ort. Hence, does the law of continuous growth apply there?

�is paper shows that in mobile apps, deletion of functionality is

actually common, challenging Lehman’s law. We analyzed user

driven requests for deletions which were found in 213,866 commits

from 1,519 open source Android mobile apps from a total of 14,238

releases. We applied hybrid (open and closed) card sorting and

created taxonomies for nature and causes of deletions. We found

that functionality deletions are mostly motivated by unneeded

functionality, poor user experience, and compatibility issues. We

also performed a survey with 106 mobile app developers. We found

that 78.3% of developers consider deletion of functionality to be

equally or more important than the addition of new functionality.

Developers con�rmed that they plan for deletions. �is implies

the need to re-think the process of planning for the next release,

overcoming the simplistic assumptions to exclusively look at adding

functionality to maximize the value of upcoming releases. Our work

is the �rst to study the phenomenon of functionality deletion and

opens the door to a wider perspective on so�ware evolution.

KEYWORDS
Deletion, Taxonomy, Functionality, Mobile apps, Survey, App store

mining

ACM Reference format:
Maleknaz Nayebi, Konstantin Kuznetsov, Paul Chen, Andreas Zeller, and Guen-

ther Ruhe. 2018. Anatomy of Functionality Deletion. In Proceedings of MSR
’18: 15th International Conference on Mining So�ware Repositories , Gothen-
burg, Sweden, May 28–29, 2018 (MSR ’18), 11 pages.

DOI: 10.1145/3196398.3196410

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

MSR ’18, Gothenburg, Sweden
© 2018 ACM. 978-1-4503-5716-6/18/05. . . $15.00

DOI: 10.1145/3196398.3196410

1 INTRODUCTION
Textbooks in So�ware Engineering o�en cite Lehman’s laws of so�-

ware evolution [13], stating universal experiences such as so�ware

has to be continuously adapted to avoid becoming less satisfactory

over time. Lehman’s sixth law, however, not only is concerned with

change; it also postulates growth: “Functional content of a program

must be continually increased to maintain user satisfaction over its

lifetime.” For service-oriented platforms such as operating systems,

this may be true; in particular, as functionality once introduced has

to stay in order to maintain backward compatibility. If a program

functionality is mainly invoked by users, though, an ever-increasing

set of features is in sharp con�ict with usability, as more and more

features compete for being easy to discover and easy to use. We

thus, pose the question: Is it true that functionality of a program

must be increased over time? Or couldn’t it be the case that func-

tionality is actually reduced in order to improve usability? So far,

functionality removal has been discussed as a spectrum that “at one

end of the dimension, the whole so�ware product is eliminated; at

the other, no code is removed at all.” [17].

To study these questions, the domain of mobile applications is

particularly interesting. On mobile devices, additional functionality

comes at a cost: First, the small screen severely limits the number

of features that can be o�ered by an application. Second, computa-

tion demands and memory usage may impact ba�ery life. Hence,

developers should have an interest in removing functionality that

negatively impacts the user experience. Finally, there is a myriad

of applications to study—including their releases over time.

�e �rst exploration of Android mobile apps shows that such

deletion of functionality may actually be the case. Here we assume

that some functionality might have been removed from the app if

the size of an app release was reduced in comparison to the previous

release.

Figure 1 shows the release sizes of three popular Android apps

over time—the Firefox browser, the Wikipedia app, and the Flym

feed reader. We see that over time, many releases had a larger size

Firefox for Android Wikipedia Flym Feed Reader

Releases1 92 Releases1 78 Releases1 55

R
e
le

a
s
e

s
iz

e

R
e
le

a
s
e

s
iz

e

R
e
le

a
s
e

s
iz

e

0

3M

0

8M

0

4M

Figure 1: App size across multiple releases. Apps do grow
and shrink over time.

1



MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Nayebi et al.

than their predecessors; however, we also see that again and again

over time, some releases showed a reduction in size instead.

1.1 Preliminary study
We assumed that if the size of a release is not smaller than the

previous release(s), then no functionality has been removed. In

order to analyze how frequently has the size of a release been reduced?
we did a preliminary study on app size evolution with the intention

to motivate anatomizing functionality deletion.

To test our assumption, in May 2017 we collected all the open

source Android apps from F-Droid that are hosted on GitHub.

In total, we studied 1,519 open source Android mobile apps over

20,806 GitHub releases to analyze the size trend of mobile apps. We

considered two ways to measure the size of a mobile app’s release:

(i) the size of the app’s binary �le (*.apk �le) as it is in the app store

(SizeAPK ), and (ii) the size of the code base at the time of the release,

available via GitHub (Sizecodebase ). Each of these measures only

provide an approximate estimation of the size. We compared these

proxies to �nd their relation.

SizeAPK is the most intuitive measure as the APK �le is what

a user downloads and installs on an Android smart device to use

a mobile app. APK’s �le size is available along with each release

both in the Google Play store and F-Droid. App stores do not

maintain all versions of an app, making the continuous analysis

of the release impossible. Furthermore, the APK �le of the same

release can vary in size with the device due to di�erent build options

such as resource minimization, compression of native libraries, and

code optimization. It is possible to build an APK from sources,

preserving the same build con�guration. However, this approach

needs signi�cant manual e�ort, as the compilation of each release

may require the manual update of speci�c se�ings.

�e size of the code base Sizecodebase at the time of release

is available on Git repositories. It can be retrieved for each and

every release, providing complete information on app size evolu-

tion. However, a repository may contain various unrelated �les

like legacy resources, tests or additional release bundles, which

a�ects the proper estimation of the size. To test whether these �les

signi�cantly bias the Sizecodebase or not, we investigated on the

association between the SizeAPK and Sizecodebase .

0

100

200

300

400

500

0

0.2

0.4

0.6

0.8

1

Apps

Reduced size releases
Ratio of # of reduced
size releases to the to-
tal # of releases

#
o
f
r
e
d
u
c
e
d

s
iz

e
r
e
le

a
s
e
s

#
o
f
r
e
d
u
c
e
d

s
iz

e
r
e
le

a
s
e
s

/
t
o
t
a
l
#

o
f
r
e
le

a
s
e
s

Figure 2: Frequency of releases with decreased size and their
relative frequency (releases with decreasing size related to
all releases per app).

Google Play store does not provide access to the archive of APK
�les. �erefore, we crawled APK �les from GitHub repositories or

third-party stores such as AndroZoo [1], AppCake and Androidha.

To retrieve Sizecodebase , we fetched each release of an app from

GitHub and cached the size of the code repository at the time of

the release. We mapped an APK �le to the particular GitHub release

based on the release date (which we retrieved from Searchman.com)

and identi�er [21]. In total, we could gather the APKs of 565 mobile

apps and 14,237 releases. Successfully retrieving about 37% of the

APK �les, we found the correlation of 0.86 between SizeAPK and

Sizecodebase . �is allowed us to use Sizecodebase as our main esti-

mator to investigate the frequency of size reduction over releases,

even not having access to all the APK �les.

We found that 98.8% of apps had decreased their size at least

once over their lifetime. 61.3% of these apps had at least one release

with more than 10% reduction in size compared to their previous

release. In Figure 2, we plo�ed (for the 1,519 apps explored) the

absolute and relative frequency of releases with decreased size. In

73.7% of all apps, more than half of their releases had a decreased

size compared to the previous release; and 33.3% of apps even had

a decreasing size trend over time (Similar to Flym app in Figure 1).

Also, we analyzed the number of Android components declared

in Android manifest �le as the proxy for the app functionality. To

answer how frequently functionality of a release has been reduced?
we examined the reduction in the number of Android components

— Activities, Services, Content Providers, and Broadcast Receivers —

in each app and release. �ey are the main building blocks of any

application and expose app’s functionality regardless of whether

it is implemented inside these components or in another part of

the code. An Android activity implements a single screen with UI

elements, which is visible to a user. Services run in the background

and perform any long-running operations. A broadcast receiver

allows the app to respond to system-wide events like a noti�cation

or a call. A content provider gives access to the app’s and user’s data.

�ese building blocks must be declared in the Android manifest

XML �le, where we can retrieve it. If the number of activities

decreases, this means that fewer screens are available, which hints

at less functionality being visible to the user. In Figure 3, we plo�ed

0

2

4

8

16

32

64

128

0

0.2

0.4

0.6

0.8

1

Apps

Releases with reduced
# of activities

Ratio of # of reduced
size releases to the to-
tal # of releases

#
o
f
r
e
d
u
c
e
d

s
iz

e
r
e
le

a
s
e
s

#
o
f
r
e
le

a
s
e
s

w
it

h
r
e
-

d
u
c
e
d

#
o
f
a
c
t
iv

it
ie

s
/

T
o
t
a
l
#

o
f
r
e
le

a
s
e
s

Figure 3: Frequency of releases with decreased number of
activities and their relative frequency. Activities are a proxy
of available functionality to the end user.

2



Anatomy of Functionality Deletion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

the absolute and relative frequency of releases with fewer activities

(sorted by relative frequency). Again, 37.6% of apps had a decrease

in activities over their lifetime. We also found that for 88.9% of

releases there was no change in their services and some services

were removed in 2.7% of the releases. 5.7% of releases removed one

or several providers while the rest did not change in terms of that.

1.1% of releases removed receivers and 2.4% added receivers while

the rest of releases remained stable.

Although Android components can be considered as a proxy for

the functionality, this estimation is rather coarse. Android com-

ponents represent the big parts of the app, whereas deletions may

a�ect only small chunks of the code. For instance, Android activities

represent the whole screens. Sometimes a�er an update, the screen

remains unchanged while the UI elements and their underneath

behavior is modi�ed. To mine these changes, we used Backstage

tool [3]. We investigated whether deletions a�ected particular UI

elements with associated API calls. For each UI element, extracted

by Backstage, we checked if it has been deleted in the next release

or if any API triggered by it has been removed. Since Backstage

requires binary APK �le for the analysis, we could investigate only

37% of the apps. We found that 39.8% of apps had UI elements

removed (and 22.7% added UI elements) in at least one release.

In almost one third of the analyzed open source Android mobile
apps, we observed a decreasing trend in size, activities, and UI

elements across releases.

Lehman’s laws postulating continuous maintenance are certainly

as true as they ever were; but if continuous growth in functionality,

as stated by Lehman’s laws, translates into bigger program size and

more screens, then mobile apps are breaking the law. Still, changes

in program size and in the number of screens may not translate

into more or less functionality. Hence, in this paper, we shed some
light on the role of deleting functionality in so�ware evolution: Do

developers delete functionality over time? Why, when, and how do

they do it?

1.2 Research questions
So far, functionality removal has been discussed as a spectrum [17].

Within this paper, we perform an exploratory study to �nd the

taxonomy of functionality deletions to detail this spectrum and

to examine the feasibility of providing decision support tools for

developers in this context. We study two main research questions

(RQs) by performing a mixed method study:

RQ1: What type of functionality was deleted from mobile
apps, and why?
We systematically selected and analyzed 8,000 commit messages
from open source mobile apps to de�ne the nature and reasons of
deletions. We extracted a taxonomy of the deleted functionality and
a taxonomy of the reasons for those deletions.

RQ2: How do developers perform functionality deletion and
how do they perceive the extracted taxonomies?
We performed a survey with 106 app developers and evaluated our
taxonomies extracted in RQ1. We also asked developers how they
decide for functionality deletion and to what extent they plan for it.

In particular, we explored the impact of user reviews on driving the
decision for functionality deletion.

�is is the �rst study ever examining the deletion of functional-

ity during so�ware evolution, and also the �rst study that would

challenge Lehman’s law of functionality growth in so�ware evo-

lution. It also is one of the �rst studies to address the evolution of

mobile apps. Our results shed new light on why, when, and how

developers delete functionality, notably when user reviews suggest

that some functionality is annoying, unnecessary, or otherwise

negatively impacts the user experience.

In the remainder of this paper, we discuss the methodology and

results for both research question in Sections 2, 3, respectively.

We discuss the results and their implications in Section 4. �is is

followed by a discussion on threats to validity (Section 5). A�er

discussing related work in Section 6, we conclude the paper in

Section 7.

2 WHATWAS DELETED, HOW ANDWHY?
We start with RQ1 and retrospectively explore mobile apps to

examine what was deleted and why. To this end, we gathered

commit messages and analyzed their content.

2.1 Data: Commit messages
For this study, we used open source Android mobile apps. We

obtained apps from F-Droid, an open source app repository, and

the Google Play Store. We extracted the app name, package name,

and the address of source code repository by crawling F-Droid.

To unify the process of mining the repositories, we �ltered out

the apps that were not on GitHub (461 out of 1,980 apps). We

gathered 1,519 remaining GitHub repositories and collected app

and release information from GitHub logs. We used this data to

mine the commits associated with deletion. Figure 4 details the

process of mining commits related to functionality deletion (or

deletion commits) along with the number of apps and commits

retrieved in each step.

In GitHub, each commit is associated with added or deleted lines

of code. If a developer changes a variable name, this change is

shown as one line addition and one line deletion on GitHub. A

commit shows the changed lines of code in addition to a message

that the developer adds to explain her changes. We used this data

to select commit messages. We �ltered out commits that were

not associated with any deleted lines of code. With the aim to

anatomize functionality deletion, we focused on the non-trivial

changes that a developer applied consciously. For example, we

considered the change of variable name which is associated with

deleting one line of code as trivial and out of the scope of this study.

To systematically separate trivial and non-trivial deletions, two

authors manually analyzed 1,500 commit messages of eight apps.

Considering the number of commits of the apps, we picked two

apps from each quartile. �en, we randomly select commit mes-

sages and two of the authors manually and independently tagged a

commit as trivial or non-trivial. �e Cohen’s Kappa [9] agreement

between the two authors in this tagging process was 0.92 which

shows almost perfect consensus. �en three of the authors looked

into non-trivial commits (994 commits). As a result we considered

3



MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Nayebi et al.

Apps on
F-Droid &
GitHub

1,519 apps

Mine commits
associated with
code deletion

642,177 commits
Mine commits in-
cluding keywords

53,010 commits

Mine commits
with high deletion

162,472 commits
Functionality

deletion
candidates

213,866 commits

21,380 commits

Manual
classification
of commits

Train, cross
validate, and

compare classifiers

Classify
commits using
Random Forest
213,866 commits

Deletion
commits

22,736
commits

Not

functionality

deletion

Figure 4: Selection of deletion commits

commits that fall into the below categories as functionality deletion

commits:

Commits containing a keyword: We lemmatized commit mes-

sages and select commit messages that include any of the key-

words “remove”, “revert”, “roll back”, “discard”, “eliminate”, “erase”,

“disable”, “delete”, and “rm”. We selected keywords using our obser-

vations during manual analysis. We denote this set by CMkeywords.

Commits with high deletion: We gathered deleted lines of code

associated with each commit message per app. Based on this data

for each app, we calculated the quartiles related to the number of

deleted lines of code per commit. To reduce the total number of com-

mits studied, we considered only commits with the size of deletions

being in the upper quartile (at least 75%) of the size of all commit

deletions. We hypothesized that deleting a big portion of code is

intentional and non-trivial. We denote this set by CMhighdeletion.

We considered the union of the commits that were found by

above proxies for functionality deletion. In this exploratory study,

we persisted on keeping our neutral perspective about what is/is

not functionality deletion. At this point of our initial analysis we

state that functional deletions are a subset of all commits found

from keyword search or being in the upper quartile of deletions:

Functionality Deletion ⊂ {CMkeywords ∪CMhighdeletions}

�is process resulted in 213,866 commits that are considered

candidates for expressing functionality deletion. 1,616 commits

were intersections between the two categories. �is selection is

broad that bring noise (false-positives) into dataset as some of

the messages are not related to deletion of any functionality. For

example “Fixed bad synchronization of �les removed from another
client” or “h�p�leupload rewri�en to use Smack”. To reduce the noise

as such, we trained and evaluated three classi�ers being Naive

Table 1: Accuracy of di�erent machine learning techniques
for classifying commits related to functionality deletion.

CrossValidation 10-Fold Leave One Out
Classi�er Precision Recall F1 Precision Recall F1

Naive Bayes 0.64 0.67 0.65 0.70 0.72 0.70

Random Forest 0.74 0.76 0.74 0.79 0.80 0.79

SVM 0.74 0.75 0.74 0.79 0.80 0.79

Bayes, Random Forest, and Support Vector Machine (SVM). We

randomly selected 21,380 commits (10% of the total set) for training

the classi�ers. Two of the authors manually labeled these commit

messages either as a “functionality deletion” or “not a functionality

deletion” (Cohen’s Kappa = 0.73). We present the cross-validation

results in Table 1. Among the tested classi�ers, Random Forest

and SVM performed almost equally. However, we selected Random

Forrest as it has a slightly be�er recall for classifying all the commit

messages. As a result, we ended up with 22,736 deletion commits.

2.2 Method: Card Sorting
We used card sorting to extract the taxonomies for RQ1. Card

sorting is an exploratory technique and can be used to derive themes

from the text [27, 36]. �is technique is used for deriving mental

models and taxonomies from qualitative data. Two types of card

sorting exist [5, 36]: “open” — where the taxonomy categories can

be openly de�ned and added, and “closed” — where the taxonomy

categories are prede�ned. For our study, we took a hybrid model

by categorizing 2,300 cards by an open sorting process to identify

categories. We followed by a subsequent closed sorting of 8,000

cards. Figure 5 shows four so�ware developers that assisted us in a

card sorting session.

�ese four developers are professional in at least two program-

ming languages and have been working for a signi�cant time (min-

imum of two years) with distributed version control systems. �ey

have been trained for 12 hours in the context of this study to under-

stand the context, expectations, commit message analysis, feature

and functionality evolution. We also performed a workshop with

the four developers having the �rst author as the facilitator to create

a shared understanding of the commit messages and objective of

this study. Within this workshop, each developer was assigned ran-

domly to some commit messages and re�ected which part of the app

has been impacted by the commit. �e re�ection was discussed in

the group and se�led once developers get a shared understanding.

We mined two taxonomies in two separate sessions to study

“What functionality was deleted” and “Why functionality was deleted”.

We limited the number of cards we sorted in each session in a way

that each session takes no more than eight hours. �ese are the

four steps that we followed during each session:

Figure 5: Card sorting session with de�ned categories
(closed card sorting).

4



Anatomy of Functionality Deletion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

1- Preparing cards: We used cards for open sorting from the set

of manually labeled commits we prepared for training classi�ers

in Table 1. For closed card sorting, we randomly selected a subset

of commit messages which were identi�ed by the classi�er as

deletion commits.

2- Open sorting: We allocated 180 minutes (3 hours) for this ses-

sion. �e four so�ware developers acted in groups of two to

categorize cards and identi�ed the categories, independent of the

other group. Each group categorized 1,150 cards in this session.

�en, for 45 minutes the session moderator (�rst author) discussed

the mutual and di�erent categories and the team agreed on a set

of categories.

3- Close sorting: We allocated 300 minutes (5 hours) to this ses-

sion. Four so�ware developers categorized 8,000 unique cards

into the categories de�ned by closed card sorting. 800 cards were

categorized by all the four team members to calculate their de-

gree of conformance. We used Fleiss’ Kappa measure [9] for this

purpose. Fleiss’ Kappa was 0.9 on average for the two taxonomies

we mined. �is shows an almost perfect agreement.

4- Taxonomy design: Two of the authors grouped the low-level

categories and drew the relation between di�erent categories,

independent from each other. �en we discussed the relation and

agreed on a high-level taxonomy. We solved disagreements by

discussing it with another author as the facilitator.

2.3 Results: Taxonomies
Four developers analyzed 8, 000 commit messages to identify “What

was deleted from apps?”, “Why the deletion happened?”, and “How

the deletion happened?”. Among 8, 000 commit messages, 10%

(800 commit messages) were categorized by all four developers

to evaluate the degree of conformance between them. �e extent

of conformance using Fleiss’ kappa for the “nature of deletions”

(“what” taxonomy) was 0.88 and for the “causes of deletion” (“why”

taxonomy) was 0.93, which shows almost perfect conformance [9].

£ How was functionality deleted? By analyzing the commit

messages within card sorting process, we identi�ed six di�erent

ways that functionality was deleted. �e functionality might have

been “removed””, “replaced”, “moved”, “reverted”, “re-factored”, or

“temporary commented”. As the result of these actions, some app

functionality was missed or became inaccessible.

�e notion of what constitutes Functionality deletion is not seen

consistently between developers. By mining the commit messages,

we found that deletions happened along with the above develop-

ment actions. In Section 3, we report the results of a survey with

app developers to be�er understand the What?, How? and Why?

of deletions.

£ What functionality was deleted from apps? By analyzing

commit messages, each team (a pair of two developers) identi�ed

categories, of which 14 were common between the teams. �e

�rst author acted as a facilitator and discussed the rest of the cat-

egories and all agreed on eight other categories. We moved the

cards around to match with the 22 approved categories. We used

the 22 categories for closed sorting. We de�ned a two-level taxon-

omy in Table 2. �e four high level categories include “security

and privacy elements”, “communication bridges”, “User interface

elements”, and “Development artifacts”. �ese categories cover the

22 classes of low-level taxonomy. We provided examples for each

of these categories. We believe that the names of the categories are

intuitive, and elaborate on a few of the more unclear ones to save

space. Feature refers to a particular functionality which is usually

de�ned as a phrase for example “removed vibrate in silent mode”.
�e code refers to any part of a code that was not speci�ed by the

Table 2: Taxonomy of the nature of functionality deletion to answer “what was deleted?” by analyzing (i) 8,000 commits
through card sorting£, and (ii) surveying 106 mobile app developers�.

High level
taxonomy Low level taxonomy % of

Cards
Avg. % by
developers Examples

User interface

elements

Audio 0.76 3.92 Remove native audio mixer
�emes/Background 1.03 4.93 Remove Android Holo themes/Remove Osmarender as a background
Text 1.51 5.82 Remove ”.” from menu text
Noti�cation 2.51 5.29 Remove on phone SMS noti�cation
Image/icon/animation 3.09 5.76 Removed old pictures/Remove old vote icons/remove custom slide animations
Feature 7.81 6.93 Remove remember last share location; Remove vibrate on silent mode
Other UI elements 12.51 9.32 Remove relative link in webview; Remove action bu�on; Remove fast scroll

Development

artifacts

GPU 0.34 2.74 Removed the Sync GPU option from the F-Zero GX ini
Log 0.56 4.25 Removed all sync call added log
Document 1.18 4.02 Remove �ipping from the release notes
Database 1.25 3.79 Remove dbLock from HostDatabase
Binary 1.26 3.71 Remove binary on Lollipop
Test 1.30 5.18 Remove unstable integration tests
File 2.09 4.63 Delete obsolete �les; Remove �les of old nav drawer
Con�g 2.36 3.5 Remove handling con�gChanges; Removed Travis con�g
Code 53.91 6.35 Remove FIFO supplicant state pa�ern; Removed tiling method polygon

Security &

licensing

License 0.16 1.70 Remove Apache license
Permission 0.61 1.71 Removed camera permission as unnecessary in Manifest Maps
Accounts and access 0.81 3.21 Removing all references to the username/password stored in the preferences

Communication

bridges

Library/API 0.41 6.97 Remove sslwebsocket lib/Remove broadcast action from APIEndpoint
Plugin 1.39 2.41 Remove IndeterminateProgress plugin
Network/web 2.84 3.86 Remove dhcp/Remove manual DNS resolution of default servers

5



MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Nayebi et al.

Table 3: Taxonomy of the reasons for functionality deletion “why it was deleted?” by analyzing (i) 8,000 commits through card
sorting£, and (ii) surveying 106 mobile app developers�. 58.78% of commit messages did not include a reason for deletion.

High level
taxonomy Low level taxonomy % of

cards
Avg. % by
developers Examples

Improving user

experience

Negative User Feedback 0.23 14.65 Remove “customer should quite” message suggested by Max
Security improvement 0.81 5.26 Remove check for root access for write permissions prior to installation
Usability improvement 4.44 13.57 Remove rotate and �ip controls as it broke the layout
Fix a bug/broken functionality 5.79 11.31 Removed the hack for loading games this �xes the launcher

Improving quality

of existing code

Duplicated functionality 1.16 8.17 Removes duplicate ifdef Win32 from VKToString
Improving code structure 5.49 5.05 Undid forma�ing havoc. We should stick with one code forma�er
Eliminate deprecated code 7.1 6.6 DrawContext: Remove the old way of se�ing uniforms
Unused/unneeded functionality 8.62 10.27 Removed unused ModalDialog style/ Remove useless support* methods.

Be�er use of

resources

Ba�ery draining 0.1 2.55 Removed local keep alive to save ba�ery
Performance optimization 0.78 3.73 Switched to WKWebView, performance improvement leveraging Safari.
Code optimization 1.53 4.38 GameRun passes from many functions, removed to reduce loop usage

Communications

Be�er management of data 0.75 5.04 Removed DBTasks, DBWriter is uni�ed method for communication
Compatibility issues 4.42 6.86 Remove save support for Android < 4.4 as there is no further support

Distribution of the 22,736 commits across categories of what and why taxonomies were almost the same. Hence we did not provide the machine learning

results in these tables.

developer in a commit message, and we could not infer any further

details about this functionality.

£ Why was functionality deleted? In a separate session, four

developers analyzed the same 8,000 commit messages and cate-

gorized them by answering “why did this deletion happen?”. �e

analysis resulted in 16 categories gained from open card sorting.

A�er discussion, the team agreed on 13 categories of reasons for

functionality deletion which were grouped into “improving user

experience”, “improving the quality of the existing code”, “Be�er

use of resources”, and “Be�er communication” within the high-level

taxonomy that covers these 13 detailed categories. We show the

complete taxonomy in Table 3. Commits that were categorized

as “Unknown” did not have any description on why the deletion

happened, for example “deleted ba�ery indicator”.

In our retrospective analysis, 29.98% of functionality deletions were
related to UI elements, and 11.27% of functionality deletions were

intended to improve users’ experience.

Using the results of commit message analysis, we provide insight

on the relationship between nature of deletions (what was deleted?)

and reasons for deletion (why it was deleted?) in a heat-map shown

in Figure 6. �e highest frequency is related to deletion of a piece of

code without stating any particular reason, which happens because

the commit messages are not very informative. Also, the deletion

of unused or unneeded functionality happened frequently.

L
icen

se

P
erm

ission

A
ccess

L
ib

ra
ry

/A
P

I
P

lu
gin

N
etw

ork
S

ou
n

d
/M

u
sic

T
h

em
e

T
ex

t
N

otifi
ca

tion

Icon
/A

n
im

ation

F
ea

tu
re

U
I

elem
en

t

G
P

U
L

o
g

D
o
cu

m
en

t

D
a
tab

ase

B
in

ary

T
ests
F

ile

C
on

fi
g

C
o
d

e

Negative user feedback
Security improvement
Usability improvement

Fix bug/broken functionality

Duplicate functionality

Improve code structure

Deprecated code
Unused/needed functionality

Battery draining
Performance optimization

Code optimization

Better data management

Compatibility issues
Unknown

Lowest % of cards Highest % of cards

Figure 6: Heatmap showing what is deleted (columns) and why it is deleted (rows) as the result of analyzing 213,866 commit
messages £.

6



Anatomy of Functionality Deletion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Automation potential: To classify all the 22,736 commit mes-

sages related to functionality deletion, we experimented with Naive

Bayes, SVM, and Random Forest classi�ers, frequently used in

academia. We used our manual card sorting classi�cation to train

these classi�ers. We found that Random Forest performed best

with F1 score = 0.83. However, the percentage of cards in each

taxonomy categories remained almost the same. Hence, we only

included the percentages of cards from manual classi�cation in

Table 2 and Table 3.

Instead, we further evaluate these taxonomies with developers

in RQ2.

3 HOW DO DEVELOPERS VIEW
FUNCTIONALITY DELETION? - A SURVEY

For the purpose of evaluating the results of RQ1 and for be�er un-

derstanding the role of deletion in so�ware evolution, we performed

a survey to get the perspective of developers on our extracted tax-

onomies. We present the questions and results of this survey along

with the results of RQ2 in the next section.

3.1 Survey design
We designed a survey with 12 questions, �ve of them related to

subject classi�cation. We used convenient sampling [12] for this

survey. We invited 130 mobile app developers that we knew from

our personal contacts to respond to our survey. �ese developers

have been working in 61 di�erent companies at the time of the

survey. Finally, 114 developers participated in the survey (response

rate = 87%). Eight responses were incomplete, and we took them out

of our analysis. �e majority of these developers (67.0%) had more

than three years of so�ware development experience. In terms of

mobile app development, the majority (53.8%) had more than three

years of experience and 81.1% of them developed more than three

apps, at the time of the survey.

We performed a survey with the objective to:

(1) Understand the frequency and extent of deletions;

(2) Evaluate and complete our results from analysis of commit mes-

sages (what, how, and why functionality is deleted);

(3) Grab developers opinion on if the extracted items in the “what”

taxonomy relates to functionality deletion or not;

(4) Understand if and to what extent deleting functionality is de-

cided in advance and planned, compared to adding a new func-

tionality or �xing bugs;

(5) Explore the trade o� between excluding a functionality versus

�xing or improving it; and

(6) Understand the role of users in triggering functionality deletions.

3.2 Survey results
106 developers participated in our survey. �e majority of these

developers had more than three years experience in mobile app

development (53.8%) and developed more than three apps (81.1%).

�e detailed information on the experience of the participants can

be found in Table 4, Q1 to Q3. We �rst validated with them the

taxonomies we mined in RQ1 and then asked how they decided on

functionality deletion and compared the importance of functionality

growth (Lehman’s law) with functionality deletion. We presented

the results of evaluating taxonomies along with card sorting results

in Table 2 and Table 3. Further details of the survey results are

presented in Table 4.

� How do developers delete functionality? We presented all

six categories of deletions we mined in RQ1 to developers. We

asked them to “Select all the actions that may result in eliminating a
functionality from apps.”. 100% of the developers selected “removed”,

“reverted”, and “temporary commented”. 95.2% also selected “refac-

tored”. On the other side, 7.5% of developers (8 out of 106) and

12.2% of developers (13 out of 106) did not consider “moved” and

“replaced” as functionality deletion, respectively.

� What do developers delete? We presented the 22 categories

of the low-level taxonomy as mined in RQ1 (see Table 2) and asked

developers to:

“Distribute 100 points considering the extent and frequency of
deletion for each of the below elements using your experience. Assign
zero to the category if you do not consider it as functionality OR you
never have deleted that element.”

Table 4: Results of the survey with 106 app developers �.
�estions marked with * were open questions.

Demographics

Q1: General develop-

ment experience

Q2: App development ex-

perience

Less than a year 5.7% 14.2%

Btw. one and three years 27.4% 32.1%

More than three years 67.0% 53.8%

Q3: Number of developed apps

One app only 4.7%

Two to three apps 14.2%

More than three apps 81.1%

Q4: To what extent you decide in advance (plan) for the below tasks?

Never Rarely Sometimes O�en Always

Adding functionality 2.8% 3.8% 18.9% 42.5% 32.1%

Fixing bug/broken functionality 4.7% 9.4% 24.5% 27.4% 34%

Deleting functionality 8.5% 14.25 19.8% 33% 24.5%

Q5: Deleting functionality from apps is ………. adding functionality.

Less important than 21.7%

As important as 48.1%

More important than 30.2%

Q6: In what cases did you decide to delete a functionality instead of �xing it?*

Complex, Time consuming and hard to �x 75.5%

Function is unneeded, unused, or unnecessary 71.7%

Negative reviews on the broken functionality 54.7%

Incompatibility with 3
rd

parties 19.8%

Fix needs functionality recreation 17.0%

Alternative functionality available 13.2%

Broken functionality cascades other errors 4.7%

Q7: Which type of user reviews provoke you to remove functionality?*

Annoyed reviews 86.9%

Repeated by di�erent users 83.7%

Associated with low rating 81.6%

Precise reporting 46.6%

Replicable crashes 12.7%

UI and UX related 7.4%

Reviews associated with uninstalls 3.7%

Asking for refund 3.2%

7



MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Nayebi et al.

Developers could add categories to complete our extracted tax-

onomy. We presented the average score for each element among all

the 106 developers’ responses in Table 2. �ree developers added

”paywall” and “advertisement”. �ey stated that they delete adver-

tisement or paywalls with the average frequency of 0.09%.

In our survey, we have asked the developers to score an artifact

according to its perceived degree of membership to functionality
deletion. �e Avg. % of opposed developers in Table 2 shows the

percentage of developers stated that the artifact in our mined “what”

taxonomy does not relate to functionality deletion. Considering

the scores per developer and artifact, we showed the extent of

disagreement between developers about the association of each

artifact to the what? taxonomy. “License”, “test”, and “log” are the

top three most controversial artifacts between developers in that

taxonomy.

� Why do developers delete functionality? We asked devel-

opers to evaluate the low level taxonomy of Table 3:

“Based on your experience, distribute 100 points among the possible
reasons for deleting apps’ functionality.”

We presented the average of the points for each reason in Table

3. Developers could also de�ne new categories and assign points to

them. Seven developers pointed to the “size of the update (release)”

with the average score of 8.5% among the seven developers. Also,

one developer pointed to “solving technical debt” as a reason for

functionality deletion.

Developers stated that 41.97% functionality deletions are related to
UI elements, and 44.79% of deletions have the purpose of improving

users’ experience.

� If and to what extent do developers plan for deletion?
We asked developers to state how o�en they decide in advance

Table 5: Degree of conformance between developers. % of op-
posed developers shows the number of developers assigning
zero to an artifact in low level taxonomy of Table 2.

Low level taxonomy % of opposed
developers

Rank of
controversy

Audio 0 –

�emes/Background 0 –

Text 3.77

Noti�cation 0 –

Image/icon/animation 0 –

Feature 0 –

Other UI elements 0 –

GPU 0 –

Log 29.2 3

Document 11.3 5

Database 7.5 6

Binary 4.7 7

Test 35.8 2

File 15.1 4

Con�g 0 –

Code 0 –

License 39.6 1

Permission 0 –

Accounts and access 0 –

Library/API 0 –

Plugin 0 –

Network/web 0 –

about deleting functionality versus adding functionality and �xing

a functionality (Q4 - Table 4). We also asked them to state how

important this planning is in comparison to planning for adding

functionality (Q5 - Table 4). 57.5% of developers usually plan for

deleting functionality, 19.8% sometimes plan for it, and the rest

never or rarely plan for it. However, adding a feature is decided

in advance for 74.6% of cases, and this number of bug �xes and

maintenance tasks is 61.4%. While functionality deletion has been

planned less in comparison to adding functionality or �xing a bug,

the majority of developers still plan for deleting functionality.

Mostly, developers plan for functionality deletions.

Besides, 78.3% of developers believe that planning functionality

is as important or even more important than adding functional-

ity to an app (Q5 - Table 4). �ey supported their opinion based

on (i) the e�ort and resources that have been put on developing

a functionality, (ii) users and reaction, and (iii) opinion of their

teammates. 45.2% of developers did not state any reason to support

their selection on this question.

Developers do not plan for functionality deletions as o�en as
addition and �xing it, but they believe planning for deletion is as

important or more important than additions.

� Do developers delete a functionality instead of �xing it?
In an open question, we asked developers how they decide if they

should �x a broken functionality versus deleting it. Each developer

could state several reasons. Two of the authors categorized the

results and extracted themes using open card sorting. We agreed

on seven themes as presented in Q6 - Table 4. 75.5% of developers

mentioned the complexity, time and e�ort needed for �xing the

functionality as the main reason. Usage of the functionality was

the second driving factor with 71.1% of developers considering it.

Repetitive and extremely negative reviews are the third trigger

(with 54.7%) for developers. As one of the developers said:

“When a belief about a crash or bug goes viral, we usually shut it
(down) by removing the functionality, whether the report is correct or
not.”

Developers delete a broken functionality instead of �xing it mainly
because of maintenance cost and complexity.

� What type of user reviews intrigue developers to delete
a functionality? Developers stated several reasons for this ques-

tion. By analyzing these results, we identi�ed seven reasons. �e

annoyed and angry reviews were the most important reason to con-

sider deletion with 86.9% of participants mentioning it. Repeated

blames by di�erent users and the reviews which are associated

with a low rating are the second and third reasons for deleting

functionality (83.7% and 81.6% of participants pointing to it resp.).

As one of the developers pointed:

“In case of frequent and angry feedback about certain annoying func-
tionality and roughly above 30% app uninstalls, we remove the func-
tionality.”

8



Anatomy of Functionality Deletion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Multiple factors are involved in making a decision about
functionality deletions. Complexity and needed maintenance e�ort,
extent of usage, and user reviews with speci�c a�ributes are the top

three most important factors.

4 DISCUSSION
Evolution of functionality is an integral part of so�ware evolu-

tion. So�ware development includes both addition and deletion of

functionality. �is study is the �rst a�empt to structure the broad

spectrum of functionality deletion. So far, functionality deletion has

been seen [17] as ranging from no code being deleted to the whole
so�ware product will be removed. Our preliminary study showed

that there is a high probability that functionality would be deleted

from a mobile app. We found that 98.8% of apps had decreased their

size at least once over their lifetime. 61.3% of these apps had at

least one release with more than 10% reduction in size compared

to their previous release. To understand the nature of function-

ality deletions, we examined over 20,000 consecutive releases of

more than 1,500 Android applications. �e analysis of commit mes-

sages resulted in three taxonomies that we later validated with app

developers.

What was deleted? It is hard to come up with an unambiguous

short de�nition for so�ware functionality deletion, as the term is

broad and interpreted in di�erent ways. In our What? taxonomy

we identi�ed 22 so�ware artifacts. We cross-validated the mined

taxonomy with app developers to show the accountability of our

results. Some of the artifacts in this taxonomy (such as “�le”) may

appear surprising for some readers. However, as an exploratory case

study, our goal was to �nd out the state of the practice, searching for

new insights and creating ideas and hypotheses for new research

[29]. We did not prune any artifacts from the taxonomy. Instead,

to interpret the results we rely on the percentages and the degree

of conformance by experts as presented in Table 5. As expected

there are contradictory ideas which call for cautious interpretation

of our results.

Whywas it deleted? Commit messages did not reveal the clear

reason for the majority of deletion activities. In the deletion distri-

bution heat-map (Figure 6), the most frequent item is the code that

has been deleted for an unknown cause. �is is an indication of

insu�cient documentation for the majority of the analyzed commit

messages. For the rest of commit messages, our analysis of commit

messages showed that 29.98% of functionality deletions are related

to UI elements and 11.27% of functionality deletions are intended

to improve users’ experience. Our survey with the app develop-

ers con�rmed the importance of users’ feedback and experience.

�is cannot be generalized without further investigation to other

so�ware applications.

How was it deleted? �e results of the How taxonomy created

the strongest controversy to our perception and the understanding

of the surveyed developers. �ere were disagreements on whether

“re-factoring”, “moving” and “replacing” are activities that indeed

result in functionality deletion. We reported these disagreements

along with the taxonomy.

We see our taxonomies as the comprehensive anatomy of func-

tionality deletions which can be adapted and contextualized [6].

Understanding the domain is the �rst step toward decision support

in the process of guiding the evolution of so�ware functionality.

�e results of our survey with developers showed that develop-

ers plan for so�ware deletion as well as additions. Moreover, for

the majority of the participants, deletion is at least as important as

adding functionality. �e �rst step toward assisting developers with

deletion decision is understanding the nature of these deletions and

possible root causes as we did in this paper.

So far, release planning in general [28] and in particular for mobile

apps [15, 34] is exclusively focused on feature addition. Planning in

consideration of both addition and deletion of functionality requires

revisiting the planning objective(s). Clearly, deletion consumes

development e�ort as well. �is is important for planning and

making decisions for the next release(s). �e exponential growth of

maintenance e�ort independence of the number of function points

(as a measure of the functional size of so�ware) was for example

con�rmed by

5 THREATS TO VALIDITY
�roughout the di�erent steps of the process, there are various

threats to the validity of our achieved results. We discuss them in

the sequel:

Are we measuring the right things? We performed a combi-

nation of machine learning and manual analysis to identify “func-

tionality deletion commits” as the non-trivial deletions of the code.

�ere is a threat that this set included other deletions as well and

that we may miss some functionality deletions. We believe that

our selection of commits was broad enough to cover the existing

categories. However, the analysis of commits should be interpreted

along with the developers’ survey results to fairly re�ect function-

ality deletion. In the survey of RQ2 with app developers, only two

other categories were identi�ed. We used half of the cards related

to functionality deletion for card sorting in RQ1 and only two of

the commits were not related to functionality deletion. As a result,

the threat of having irrelevant commits is low.

Another construct validity threat relates to the creation of the

two taxonomies. Finding “fully correct” taxonomies is inherently

di�cult. We applied a hybrid approach trying to combine the

strengths of both open and closed card sorting. �e high Fleiss’

Kappa value showed conformance between developers. Having

this along with the results of the survey showed that we created

“good enough” taxonomies.

Arewedrawing the right conclusions about treatment and
outcome relation? We contacted developers from our personal

contacts whom they have a considerable amount of contributions

and years of experience. 106 developers participated in the survey

of RQ2 with a response rate of 87%. In comparison to studies in the

context of mobile apps, this is considered high participation. Nev-

ertheless, we selected developers by convenient sampling, which

might bias the conclusions drawn.

Can we be sure that the treatment indeed caused the out-
come? Our �ndings in RQ1 and RQ2 are the result of the proce-

dure that we described in detail. We designed our protocol con-

sidering the broad de�nition existing in the literature [17]. While

the results sound controversial in some cases, we believe this in

9



MSR ’18, May 28–29, 2018, Gothenburg, Sweden M. Nayebi et al.

particular, makes the results interesting and triggers further studies.

We kept our position unbiased and did not prune any part of results

from mining. Using app developers to validate the results of our

mining and presenting the outcome of the survey minimized the

existence of this type of threat to validity.

Can the results be generalized beyond the scope of this
study? Our retrospective analysis was performed on open source

mobile apps. �e number of apps, reviews, and commits analyzed

is considered high, indicating that results are signi�cant at least for

open source mobile apps.

6 RELATEDWORK
In this study, we challenged Lehman’s law of growth by investigat-

ing functionality deletion as a speci�c activity in the development

process. So�ware evolution has been the subject of several stud-

ies, but deletions have been investigated only in few cases such as

[16]. We focused on the mobile apps because the device resources

are limited and the size of the release has been introduced as a

decisive factor for release decisions [20]. Feature and functionality

deletion for so�ware products, in general, have been discussed

mostly on the model level which triggered us to widely investigate

the nature and reasons of functionality deletion in RQ1 and RQ2.

We discuss the literature on most related works on functionality

deletion in Section 6.1. We brie�y discuss the existing taxonomies

in so�ware engineering and the taxonomies that exist for mobile

apps in Section 6.2.

6.1 Code Deletion in So�ware Engineering
Development activities have been discussed in so�ware engineer-

ing as addition, deletion, and modi�cation [26, 30]. However, ad-

dition and modi�cation have been discussed more in comparison

to deletion. Adding functionality is the scope of release planning.

All the di�erent approaches developed for that just consider addi-

tion [10, 28, 31] or applying change requests [2, 34]. Murphy-Hill et

al. [17] di�erentiated between addition and deletion in the context

of a bug �x and considered functionality deletion as the extent of

a feature that is removed during a bug �x. �ey found that 75%

of their participated developers remove functionality to �x a bug,

which is aligned with our �ndings of RQ1. �e heatmap in Figure

6 shows that deletion of code or feature to �x a bug is a common

reason for functionality removal. �e number of studies used code

churn speci�cally in the context of defect prediction [19, 37]. How-

ever, code churn is the number of added or deleted lines of code

together and does not di�erentiate between them.

�e results of RQ1 showed that refactoring and moving a feature

usually includes functionality deletion and the majority (but not

all) of developers agreed with that. For refactoring multiple aspects

such as mutual deletion of code [11] and moving strategies for meth-

ods and statements (move methods) [4, 32] to eliminate bad smells

[14] are considered. While we found permissions and licenses in

our taxonomy, Calciati and Gorla [7] analyzed the evolution of

user permissions in mobile apps and showed that permissions were

rarely removed. In the process of permission evolution, Wei et al.

also considered replacement of permissions as removing [35].

6.2 Taxonomies in So�ware Engineering
Usman et al. [33] performed a systematic literature review and

analyzed 270 papers to describe the state of the art research in

so�ware engineering taxonomies. �ey found that most studies

rely on a qualitative procedure to classify the subjects. �ey found

that 33.9% of taxonomies did not demonstrate any usability. Only

19.58% of these studies showed the usefulness of their taxonomies

by case study, survey, or experimentation. We used both the survey

in RQ2. We used card sorting on 8,000 commit messages to extract

these hierarchies [36]. Similar to us, 96.68% of the studies obtain

taxonomies based on qualitative methods. However, 83.76% of them

do not provide an explicit description of their procedure which

motivated us to provide details about our study.

In the context of mobile app reviews, Pagano and Maalej [23]

de�ned categories of user reviews by manually coding 1,100 reviews.

Panichella et al. [24] introduced a taxonomy of user reviews related

to app maintenance. �ree authors manually inspected 300 emails

within two so�ware project mailing lists and mapped the extracted

taxonomy to the user review categories de�ned by Pagano and

Maalej [23]. Di Sorbo et al. [8] de�ned an intention based and topic-

based categories of user reviews. Two of the paper authors analyzed

438 reviews manually and de�ned a two-level taxonomy; they used

a classi�er to categorize 952 reviews. Pathak et al. also provided a

taxonomy for bugs related to energy consumption [18, 25].

7 CONCLUSION
Lehman’s law on continuous growth of functionality does not univer-
sally apply. In the domain of mobile apps, developers frequently

delete functionality—be it to �x bugs, to maintain compatibility, or

to improve the user experience. �is study con�rms these trends by

analyzing the evolution of 1,519 open source mobile apps, including

top apps such as Firefox and Wikipedia; and by surveying 106 app

developers.

�is is the �rst study to investigate the phenomenon of func-

tionality deletion in so�ware evolution, and one of the �rst studies

to examine app evolution over time. It opens the door towards a

be�er understanding of so�ware evolution, in particular in an im-

portant domain such as app development. In the days of Lehman’s

studies, features such as user experience, screen space, or energy

consumption were not as crucial as they are today; it may be time

to revisit and re�ne Lehman’s �ndings.

Our future work will focus on involving app users to con�rm the

potential value of deletions also from their perspective in terms of

improved usability and performance. We need to further explore

the de�nition of functionality. More comprehensive empirical eval-

uation and analytical work are needed for that. �e extension of

existing mobile app release planning models towards consideration

of platform mediation [22] and limited resources should be consid-

ered. For deciding on the functionality of evolving apps, we also

target to perform a trade-o� analysis balancing maintenance e�ort,

usability, and functionality deletions. Overall, the main goal of our

future research will be to be�er understand today’s so�ware evolu-

tion, especially for apps, and including deletion of functionality as

a natural part of its evolution.

10



Anatomy of Functionality Deletion MSR ’18, May 28–29, 2018, Gothenburg, Sweden

ACKNOWLEDGMENT
�is research was partially supported by the Natural Sciences and

Engineering Research Council of Canada, NSERC Discovery Grant

RGPIN-2017-03948.

REFERENCES
[1] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: Collecting millions of android apps for the research community. In

Proceedings of the 13th International Conference on Mining So�ware Repositories.
ACM, 468–471.

[2] David Ameller, Carles Farré, Xavier Franch, and Guillem Ru�an. 2016. A Sur-

vey on So�ware Release Planning Models. In Product-Focused So�ware Process
Improvement: 17th International Conference, PROFES 2016, Trondheim, Norway,
November 22-24, 2016, Proceedings 17. Springer, 48–65.

[3] Vitalii Avdiienko, Konstantin Kuznetsov, Isabelle Rommelfanger, Andreas Rau,

Alessandra Gorla, and Andreas Zeller. 2017. Detecting behavior anomalies in

graphical user interfaces. In Proceedings of the 39th International Conference on
So�ware Engineering Companion. IEEE Press, 201–203.

[4] Gabriele Bavota, Rocco Oliveto, Malcom Gethers, Denys Poshyvanyk, and An-

drea De Lucia. 2014. Methodbook: Recommending move method refactorings via

relational topic models. IEEE Transactions on So�ware Engineering 40, 7 (2014),

671–694.

[5] Andrew Begel and �omas Zimmermann. 2014. Analyze this! 145 questions for

data scientists in so�ware engineering. In Proceedings of the 36th International
Conference on So�ware Engineering. ACM, 12–23.

[6] Lionel Briand, Domenico Bianculli, Shiva Nejati, Fabrizio Pastore, and Mehrdad

Sabetzadeh. 2017. �e case for context-driven so�ware engineering research:

Generalizability is overrated. IEEE So�ware 34, 5 (2017), 72–75.

[7] Paolo Calciati and Alessandra Gorla. 2017. How do apps evolve in their per-

mission requests?: a preliminary study. In Proceedings of the 14th International
Conference on Mining So�ware Repositories. IEEE Press, 37–41.

[8] Andrea Di Sorbo, Sebastiano Panichella, Carol V Alexandru, Junji Shimagaki,

Corrado A Visaggio, Gerardo Canfora, and Harald C Gall. 2016. What would

users change in my app? Summarizing app reviews for recommending so�ware

changes. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of So�ware Engineering. ACM, 499–510.

[9] Jean Dickinson Gibbons and Subhabrata Chakraborti. 2011. Nonparametric
statistical inference. Springer.

[10] Des Greer and Guenther Ruhe. 2004. So�ware release planning: an evolutionary

and iterative approach. Information and so�ware technology 46, 4 (2004), 243–253.

[11] Christoph Kiefer, Abraham Bernstein, and Jonas Tappolet. 2007. Mining so�ware

repositories with isparol and a so�ware evolution ontology. In Proceedings of the
Fourth International Workshop on Mining So�ware Repositories. IEEE Computer

Society, 10–18.

[12] Barbara Kitchenham and Shari Lawrence P�eeger. 2002. Principles of survey

research: part 5: populations and samples. ACM SIGSOFT So�ware Engineering
Notes 27, 5 (2002), 17–20.

[13] Manny M Lehman. 1996. Laws of so�ware evolution revisited. In European
Workshop on So�ware Process Technology. Springer, 108–124.

[14] Mika Mantyla, Jari Vanhanen, and Casper Lassenius. 2003. A taxonomy and an

initial empirical study of bad smells in code. In So�ware Maintenance, 2003. ICSM
2003. Proceedings. International Conference on. IEEE, 381–384.

[15] William Martin, Federica Sarro, Yue Jia, Yuanyuan Zhang, and Mark Harman.

2016. A survey of app store analysis for so�ware engineering. IEEE Transactions
on So�ware Engineering (2016), 1–1.

[16] Audris Mockus, Roy T Fielding, and James Herbsleb. 2000. A case study of open

source so�ware development: the Apache server. In Proceedings of the 22nd
international conference on So�ware engineering. Acm, 263–272.

[17] Emerson Murphy-Hill, �omas Zimmermann, Christian Bird, and Nachiappan

Nagappan. 2013. �e design of bug �xes. In Proceedings of the 2013 International
Conference on So�ware Engineering. IEEE Press, 332–341.

[18] Meiyappan Nagappan and Emad Shihab. 2016. Future trends in so�ware engineer-

ing research for mobile apps. In So�ware Analysis, Evolution, and Reengineering
(SANER), 2016 IEEE 23rd International Conference on, Vol. 5. IEEE, 21–32.

[19] Nachiappan Nagappan and �omas Ball. 2005. Use of relative code churn mea-

sures to predict system defect density. In So�ware Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on. IEEE, 284–292.

[20] Maleknaz Nayebi, Bram Adams, and Guenther Ruhe. 2016. Release Practices for

Mobile Apps–What do Users and Developers �ink?. In 2016 IEEE 23rd Interna-
tional Conference on So�ware Analysis, Evolution, and Reengineering (SANER),
Vol. 1. IEEE, 552–562.

[21] Maleknaz Nayebi, Homayoon Farrahi, and Guenther Ruhe. 2016. Analysis of

marketed versus not-marketed mobile app releases. In Proceedings of the 4th
International Workshop on Release Engineering. ACM, 1–4.

[22] Maleknaz Nayebi, Homayoon Farrahi, and Guenther Ruhe. 2017. Which Version

Should be Released to App Store?. In 2017 ACM/IEEE International Symposium
on Empirical So�ware Engineering and Measurement (ESEM). IEEE, 324–333.

[23] Dennis Pagano and Walid Maalej. 2013. User feedback in the appstore: An

empirical study. In Requirements Engineering Conference (RE), 2013 21st IEEE
International. IEEE, 125–134.

[24] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visag-

gio, Gerardo Canfora, and Harald C Gall. 2015. How can I improve my app?

Classifying user reviews for so�ware maintenance and evolution. In So�ware
maintenance and evolution (ICSME), 2015 IEEE international conference on. IEEE,

281–290.

[25] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. 2011. Bootstrapping energy

debugging on smartphones: a �rst look at energy bugs in mobile devices. In

Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM, 1–6.

[26] Baishakhi Ray, Meiyappan Nagappan, Christian Bird, Nachiappan Nagappan,

and �omas Zimmermann. 2015. �e uniqueness of changes: Characteristics

and applications. In Mining So�ware Repositories (MSR), 2015. IEEE, 34–44.

[27] Gordon Rugg and Peter McGeorge. 1997. �e sorting techniques: a tutorial paper

on card sorts, picture sorts and item sorts. Expert Systems 14, 2 (1997), 80–93.

[28] Günther Ruhe. 2010. Product release planning: methods, tools and applications.
CRC Press.

[29] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting

case study research in so�ware engineering. Empirical so�ware engineering 14,

2 (2009), 131.

[30] Emad Shihab, Christian Bird, and �omas Zimmermann. 2012. �e e�ect of

branching strategies on so�ware quality. In Proceedings of the ACM-IEEE inter-
national symposium on Empirical so�ware engineering and measurement. ACM,

301–310.

[31] Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar, Saad Bin Saleem,

and Muhammad Usman Sha�que. 2010. A systematic review on strategic release

planning models. Information and so�ware technology 52, 3 (2010), 237–248.

[32] Nikolaos Tsantalis and Alexander Chatzigeorgiou. 2009. Identi�cation of move

method refactoring opportunities. IEEE Transactions on So�ware Engineering 35,

3 (2009), 347–367.

[33] Muhammad Usman, Ricardo Bri�o, Jürgen Börstler, and Emilia Mendes. 2017.

Taxonomies in so�ware engineering: A Systematic mapping study and a revised

taxonomy development method. Information and So�ware Technology (2017).

[34] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massim-

iliano Di Penta. 2016. Release planning of mobile apps based on user reviews. In

Proceedings of the 38th International Conference on So�ware Engineering. ACM,

14–24.

[35] Xuetao Wei, Lorenzo Gomez, Iulian Neamtiu, and Michalis Faloutsos. 2012.

Permission evolution in the android ecosystem. In Proceedings of the 28th Annual
Computer Security Applications Conference. ACM, 31–40.

[36] �omas Zimmermann. 2016. Card sorting: From text to themes. In Perspectives
on Data Science for So�ware Engineering. Morgan Kaufmann, 137–141.

[37] �omas Zimmermann, Rahul Premraj, and Andreas Zeller. 2007. Predicting

defects for eclipse. In Proceedings of the third international workshop on predictor
models in so�ware engineering. IEEE Computer Society, 9.

11


	Abstract
	1 Introduction
	1.1 Preliminary study
	1.2 Research questions

	2 What was deleted, How and Why?
	2.1 Data: Commit messages
	2.2 Method: Card Sorting
	2.3 Results: Taxonomies

	3 How Do Developers View Functionality Deletion? - A Survey
	3.1 Survey design
	3.2 Survey results

	4 Discussion
	5 Threats to Validity
	6 Related Work
	6.1 Code Deletion in Software Engineering
	6.2 Taxonomies in Software Engineering

	7 Conclusion
	References

